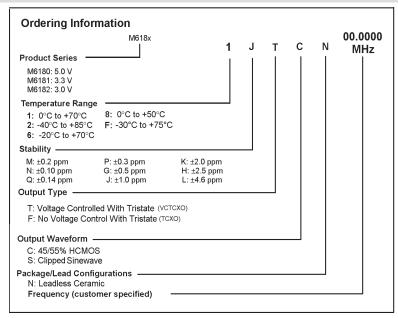


3.2 x 5.0 mm, 3.0, 3.3 & 5.0 V, HCMOS or Clipped Sine Wave Precision TCXO/TCVCXO

Product Features

Tight stability performance
(±0.2 ppm) over Industrial Temperatures (-40 °C to +85 °C)
(±0.1 ppm) over Commercial Temperatures (0 °C to 70 °C)

- 3.0 V, 3.3 V and 5.0 V versions
- · Low phase noise performance
- · Tristate Function standard


Product Description

MtronPTI's M618x Series TCXO's and TCVCXO's provide design engineers with low voltage, surface mount products with extremely tight stability (down to ±0.10 ppm) over temperature and time. Specially processed crystals enable the M618x to achieve consistent long-term stability and minimal frequency shift after reflow. The low phase noise (-155 dBc/Hz at 100 kHz) makes the M618x ideal for the design engineer working on all types of systems as the reference timing source.

Product Applications

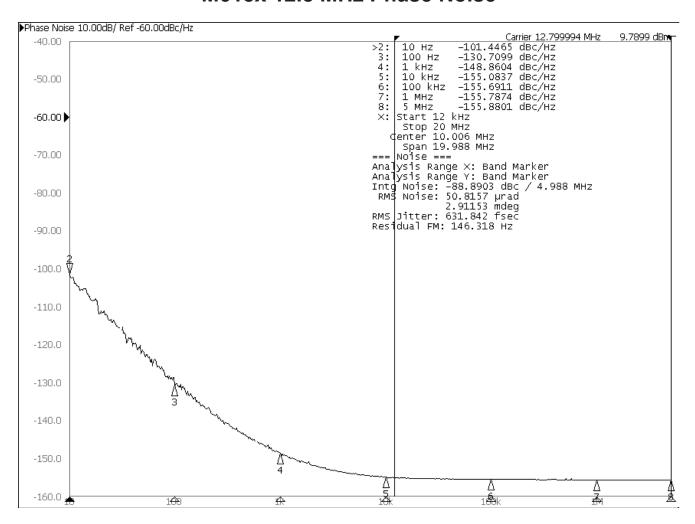
The M618x Series is ideally suited for a wide range of applications such as GPS, military, avionics, test and measurement, WLAN, WiMax base stations, point to point/multi-point radios, medical equipment, frequency synthesis, frequency translation and land mobile radio. Standard output for the M618x series is HCMOS compatible or clipped sine wave. The product is ideally suited for battery and remote applications where it draws as little as 1.5 mA of current with a 3.3 volt supply at 13 MHz. This low power consumption provides an advantage over similarly specified ovenized oscillators for power-sensitive applications. The M618x series offers ±10 ppm minimum pull range with excellent tuning linearity performance for critical PLL applications. This series is available in selective frequencies from 8 MHz to 52 MHz.

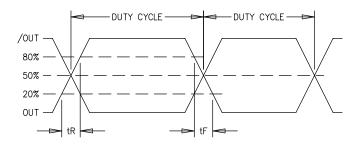
Product Ordering Information

M6180Sxxx, M6181Sxxx, M6182Sxxx - Contact factory for datasheets.

$3.2 \times 5.0 \text{ mm}, 3.0, 3.3 \& 5.0 \text{ V}, \text{HCMOS or Clipped Sine Wave Precision TCXO/TCVCXO}$

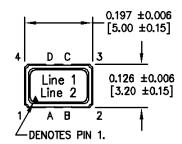
Performance Characteristics

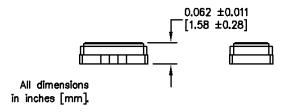

	Parameter	Symbol	Symbol Min. Typ. Max. Units			Conditions/Notes				
	Frequency Range	Fo	8		52	MHz				
	Operating Temperature	T _A	(See Ordering Information)			ç				
	Storage Temperature	T _{STG}	-55		+125	°C				
	Frequency Tolerance @ +25 °C	ΔF/F	-1.0		+1.0	ppm	For TCXO only			
	Frequency Stability	ΔF _T /F	(See Ordering Infor		rmation)	ppm	(F _{MAX} - F _{MIN})/2			
	Stability vs. Reflow		-1.0		+1.0	ppm				
	Frequency vs. Supply	$\Delta F_{VDD}/F$		±0.02	±0.1	ppm	For ±5% supply voltage variation			
	Frequency vs. Load	ΔF _{LOAD} /F		±0.02	±0.1	ppm	For ±5% load variation			
	Aging (First Year)		-1.0		+1.0	ppm	F ₀ ≤ 20 MHz			
	Aging (First Year)		-2.0		+2.0	ppm	F ₀ > 20 MHz			
	Aging (10 Year)		-3.0		+3.0	ppm	F ₀ ≤ 20 MHz (includes first year)			
	Aging (10 Year)		-5.0		+5.0	ppm	F ₀ > 20 MHz (includes first year			
	Supply Voltage	V_{DD}	(See O	rdering Infor	rmation)	V	±5% voltage tolerance			
	Supply Current	I _{DD}	2.0		3.0	mA	HCMOS output at 13 MHz			
	(Reference to $V_{DD} = 3.3 \text{ V}$)		3.0		4.0	mA	HCMOS output at 26 MHz			
			5.5		6.5	mA	HCMOS output at 52 MHz			
			1.3		1.9	mA	Clipped Sine Wave output at 13 MHz			
suc			1.7		2.3	mA	Clipped Sine Wave output at 26 MHz			
atic			2.8		3.5	mA	Clipped Sine Wave output at 52 MHz			
i£i	Output Logic Levels	V _{OL}			20	% V _{DD}	$I_{OH}/I_{OL} = \pm 4 \text{ mA}, V_{DD} = +3.0 \text{ V}$			
Electrical Specifications	(HCMOS)	V_{OH}	80			$\% V_{DD}$	$I_{OH}/I_{OL} = \pm 4 \text{ mA}, V_{DD} = +3.0 \text{ V}$			
Sp	Output Level	V _{OUT}	1.0			V_{pk-pk}	F ₀ ≤ 40 MHz			
cal	(Clipped Sine Wave)	V_{OUT}	8.0			V_{pk-pk}	F ₀ > 40 MHz			
댢	Symmetry (Duty Cycle)	t _{DC}	40	50	60	%	Ref. to ½ V _{DD} HCMOS Only			
Ee	Rise/Fall Time	t_R/t_F			6.5	ns	Ref. 10% to 90% HCMOS only			
	Output Load		15 pF				HCMOS Output			
			10 kΩ 10 pF				Clipped Sine Wave Output			
	Frequency Adjustment		-10		+10	ppm	Over Control Voltage Range			
	Control Voltage Range		0.3	1.50	2.7	V	For $V_{DD} = 3.0 \text{ V}$			
			0.3	1.65	3.0	V	For $V_{DD} = 3.3 \text{ V}$			
			0.5	2.50	4.5	V	For $V_{DD} = 5.0 \text{ V}$			
	Input Leakage Current		-50		+50	μΑ				
	Input Resistance		100			kΩ				
	Linearity				5	%				
	Modulation Bandwidth		2 kHz							
	Tristate Function		70			% V _{DD}	Output enabled. Logic "1" or "Open"			
					30	$\% V_{DD}$	Output disabled. Logic "0" or "GND"			
	Tristate Leakage Current		-100		+100	μΑ				
	Phase Noise			-101		dBc/Hz	@ 10 Hz Offset			
	(Typical 12.8 MHz HCMOS @ 3.3 V)			-130		dBc/Hz	@ 100 Hz Offset			
				-149		dBc/Hz	@ 1 kHz Offset			
				-155		dBc/Hz	@ 10 kHz Offset			
				-156		dBc/Hz	@ 100 kHz Offset			
ā	Shock	MIL-STD-20	MIL-STD-202, Method 213, Condition C (100 g)							
Environmental	Vibration	MIL-STD-202, Methods 201 & 204 (10 g from 10 Hz to 2000 Hz)								
	Solderability	EIAJ-STD-0	EIAJ-STD-002							
nvir	Package	3.2 mm x 5.	0 mm x 1.58	8 mm, SMT	(RoHS Com	pliant)				
Ш	Max Soldering Conditions	See solder profile								

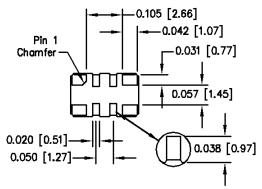

3.2 x 5.0 mm, 3.0, 3.3 & 5.0 V, HCMOS or Clipped Sine Wave Precision TCXO/TCVCXO

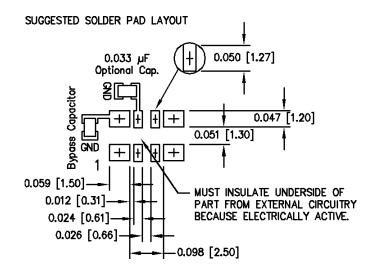
Phase Noise Plot

M618x 12.8 MHz Phase Noise


Output Waveform (HCMOS Output)






 3.2×5.0 mm, 3.0, 3.3 & 5.0 V, HCMOS or Clipped Sine Wave Precision TCXO/TCVCXO

Product Dimension & Pinout Information

Pad Connections:

1= EFC or n/c

A= n/c

В= п/с

2= Ground

3= Output

C= Enable/Disable or n/c

D= Low Phase Noise capacitor or n/c

4= Supply Voltage

Marking

Line 1: M61 YM

Line 2: XXMXXXX

 3.2×5.0 mm, 3.0, 3.3 & 5.0 V, HCMOS or Clipped Sine Wave Precision TCXO/TCVCXO

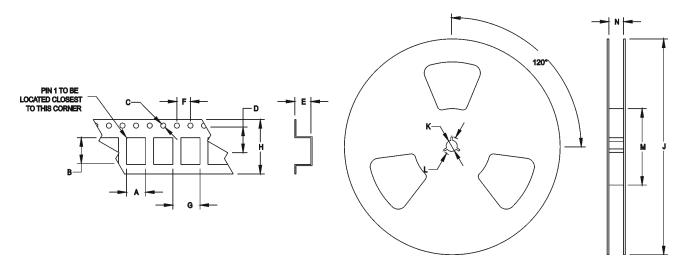
Handling Information


Although protection circuitry has been designed into the M618x oscillator, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. MtronPTI utilizes a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define the mode. Although no industry-wide standard has been adopted for the CDM, a standard HBM (resistance = 1500 Ω , capacitance = 100 pF) is widely used and therefore can be used for comparison purposes. The HBM ESD threshold presented here was obtained using these circuit parameters.

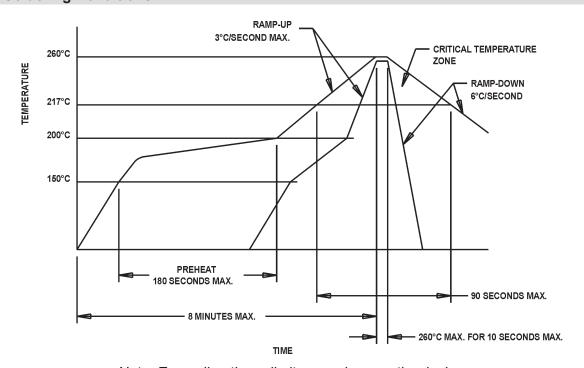
Model	ESD Threshold, Minimum	Unit
Human Body	1500*	V
Charged Device	1500*	V

* MIL-STD-833D, Method 3015, Class 1

Typical Test Circuits


Test Circuit - N Package With Tristate

 3.2×5.0 mm, 3.0, 3.3 & 5.0 V, HCMOS or Clipped Sine Wave Precision TCXO/TCVCXO


Tape & Reel Specifications

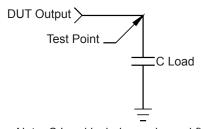
(all measurements are in mm)	Α	В	С	D	E	F	G	Н	J	K	L	М	N
M618x	3.6	5.4	1.5	5.5	1.9	4	8	12	180	13	20.2	60	12

Standard Tape and Reel: 1000 parts per reel

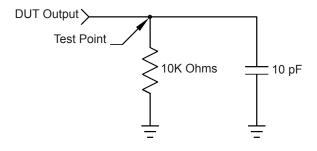
Maximum Soldering Conditions

Note: Exceeding these limits may damage the device.

 3.2×5.0 mm, 3.0, 3.3 & 5.0 V, HCMOS or Clipped Sine Wave Precision TCXO/TCVCXO


Quality Parameters

Environmental Specifications/Qualification Testing Performed						
Test	Test Method	Test Condition				
Electrical Characteristics	Internal Specification	Per Specification				
Frequency vs. Temperature	Internal Specification	Per Specification				
Mechanical Shock	MIL-STD-202, Method 213, C	100 g's				
Vibration	MIL-STD-202, Method 201-204	10 g's from 10-2000 Hz				
Thermal Cycle	MIL-STD-883, Method 1010, B	-55 Deg. C to +125 Deg. C, 15 minute Dwell, 10 cycles				
Aging	Internal Specification	168 Hours at 105 Degrees C				
Gross Leak	MIL-STD-202, Method 112	30 Second Immersion				
Fine Leak	MIL-STD-202, Method 112	Must meet 1x10-8				
Solderability	MIL-STD-883, Method 2003	8 Hour Steam Age – Must Exhibit 95% coverage				
Resistance to Solvents	MIL-STD-883, Method 2015	Three 1 minute soaks				
Physical Dimensions	MIL-STD-883, Method 2016	Per Specification				
Internal Visual	Internal Specification	Per Internal Specification				


Load Circuit

Load Circuit #2 - HCMOS Output

Load Circuit #7 - Clipped Sine Wave Output

Note: C Load includes probe and fixturing.

For custom products or additional specifications contact our sales team at 800.762.8800 (toll free) or 605.665.9321

For more information on this product visit the MtronPTI website at www.mtronpti.com