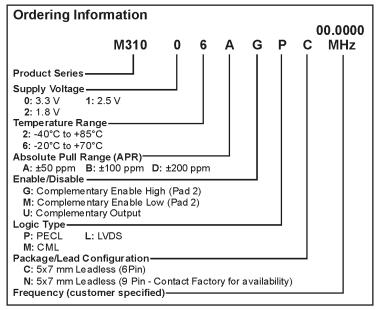


Product Features

- Featuring QiK Chip™ Technology
- From order to ship in 2 weeks
- Superior Jitter Performance (less than 0.25 ps RMS, 12 kHz - 20 MHz)
- APR from ±50 to ±300ppm over industrial temperature range
- SAW replacement performance
- Frequencies from 150 MHz to 1.4 GHz

Product Description


The M310x series of VCXO's is designed with a hermetically sealed high precision AT cut quartz crystal, combined with our QiK Chip™ technology. This combination provides an industry setting 0.35 ps RMS jitter performance and excellent Phase Noise for your demanding circuit. The M310x is available in LVPECL, LVDS, or CML output and can be built to a variety of power requirements, 3.3, 2.5, and 1.8V. Tight thermal stability performance, broad frequency range, in a small 5x7 mm package, and the ability to build and provide product in approximately 2 weeks, gives the designer a quick, solid foundation to build a solution with.

Product Applications

- Telecommunications such as SONET / SDH / DWDM / FEC / SERDES / OC-3 thru OC-192
- Wireless base stations / WLAN / Gigabit Ethernet
- xDSL, Network Communications

- Avionic Flight Controls
- Military Communications
- Clock and Data Recovery
- Low Jitter Clock Generation

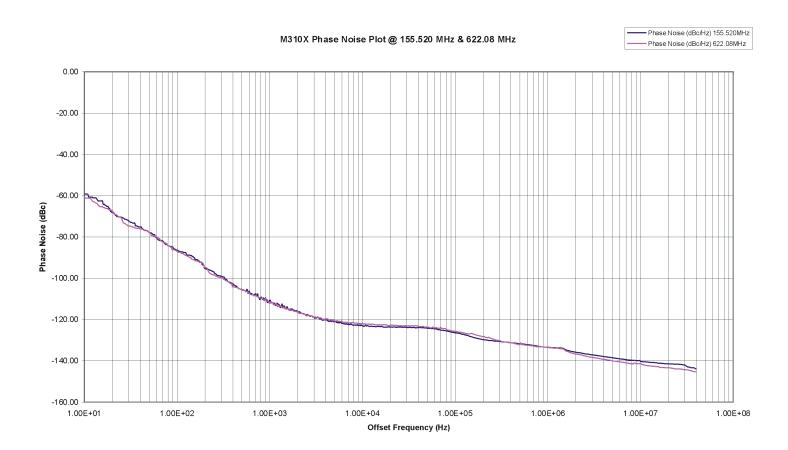
Product Ordering Information

M3100Sxxx, M3101Sxxx & M3102Sxxx - Contact factory for datasheets.

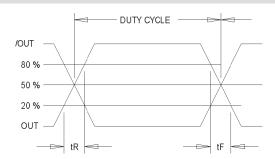
Revision: 11-5-10

Performance Characteristics

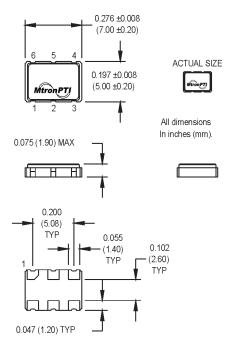
	PARAMETER	Symbol	Min.	Тур.	Max.	Units	Condition/Notes		
	Frequency Range	F	50	1 / -	1400	MHz	See Note 1		
	Operating Temperature	TA	(See ord	dering infor	mation)				
	Storage Temperature	Ts	-55		+125	°C	1		
	Frequency Stability	ΔF/F		±25	1	ppm	1		
	Aging	Δι / ι		120	1	ррш			
	1st Year		-3		+3	ppm			
	Thereafter (per year)		-1		+1	ppm			
	Pullability/APR		(See ordering information)			See Note 2			
	Gain Transfer Function			90		ppm/V	For ±50 ppm APR		
				135		ppm/V	For ±100 ppm APR		
				180		ppm/V	For ±200 ppm APR		
	Control Voltage	Vc	0.18	0.90	1.62	V	@ 1.8V Vcc		
			0.25	1.25	2.25	V	@ 2.5V Vcc		
		1	0.30	1.65	3.0	V %	@ 3.3V Vcc		
	Linearity	t	40	1	5		Positive Monotonic		
	Modulation Bandwidth	fm Zin	10	414		KHz	-3 dB bandwidth		
us	Input Impedance Supply Voltage	Vcc	500k	1M 1.8	1.89	Ohms V	@ DC LVDS/CML		
ē	Supply voltage	VCC	2.375	2.5	2.625	V	LVD5/GML		
Sa			3.135	3.3	3.465	v			
Specifications	Input Current	Icc	000	0.0	125	mA	LVPECL/LVDS/CML		
ğ	Load	1.00					See Note 3		
			50 Ohm	s to (Vcc -	2) Vdc	LVPECL Waveform			
ij				m differentia		LVDS/CML Waveform			
Electrical	Symmetry (Duty Cycle)		45		55	%	LVPECL: Vdd-1.3 V LVDS: 1.25 V		
	Output Skew			20		ps	LVPECL		
				15		ps	CML		
				20		ps	LVDS		
	Differential Voltage	Vod	250	350	450	mV	LVDS		
		Vod	0.7	0.95	1.20	Vpp	CML		
	Common Mode Output Voltage	Vcm		1.2		V	LVDS		
	Logic "1" Level	Voh	Vcc - 1.02			V	LVPECL		
	Logic "0" Level	Vol			Vcc -1.63	V	LVPECL		
	Rise/Fall Time	Tr/Tf		0.23	0.35	ns	@ 20/80% LVPECL, LVDS, CML		
	Enable Function				C: Output activilisables to high	Output Option G			
					Output active out disables to	Output Option M			
	Start up Time				10	ms			
	Phase Jitter		Ì	Ì			Ì		
	@ 622.08 MHz	φJ		0.25		ps RMS	Integrated 12 kHz – 20 MHz		
_	Machanical Chast-		T						
nt	Mechanical Shock		Per MIL-STD-202, Method 213, Condition C						
Environmental	Vibration		Per MIL-STD-202, Method 201 & 204						
lo.	Max Soldering Conditions	5	See solder profile, Figure 1						
ĬΞ	Hermeticity		Per MIL-STD-202, Method 112 (1 x 10 ⁻⁸ atm cc/s of helium) Per MIL-STD-883, Method 203						
ᇤ	Solderability		Per MIL-S	I D-883, Me	thod 203				

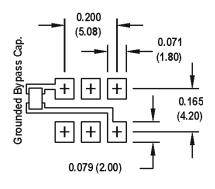

Note 1: Contact factory for standard frequency availability over 945 MHz.

Note 2: APR specification is inclusive of initial tolerance, deviation over temperature, shock, vibration, supply voltage, and aging for one year at 50°C mean ambient temperature.


Note 3: See Load Circuit Diagram in this Datasheet. Consult factory with nonstandard output load requirements.

Phase Noise Plot


Output Waveform

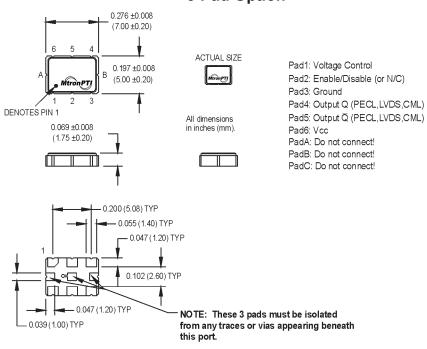

Output Waveform: LVDS/CML/PECL

Product Dimension & Pinout Information

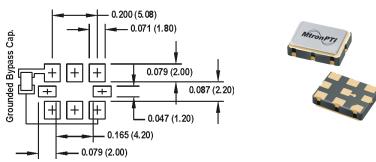
SUGGESTED SOLDER PAD LAYOUT

6 Pad Standard Option

Pad1: Voltage Control


Pad2: Enable/Disable (or N/C)

Pad3: Ground


Pad4: Output Q (PECL,LVDS,CML)
Pad5: Output Q (PECL,LVDS,CML)

Pad6: Vcc

9 Pad Option

SUGGESTED SOLDER PAD LAYOUT

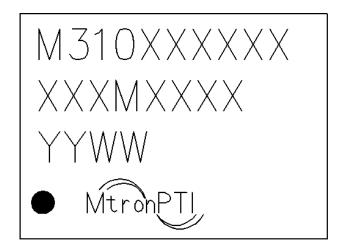
Handling Information

Although protection circuitry has been designed into the M310x oscillator, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. MtronPTI utilizes a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define the mode. Although no industry-wide standard has been adopted for the CDM, a standard HBM (resistance = 1500 Ω , capacitance = 100 pF) is widely used and therefore can be used for comparison purposes. The HBM ESD threshold presented here was obtained using these circuit parameters.

Model	ESD Threshold, Minimum	Unit
Human Body	1500*	V
Charged Device	1500*	V

^{*} MIL-STD-833D, Method 3015, Class 1

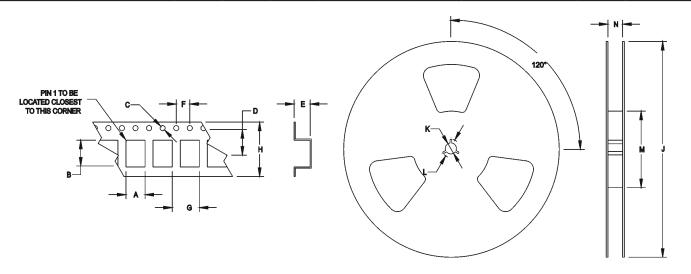
ATTENTION Static Sensitive Devices Handle only at Static Safe Work Stations

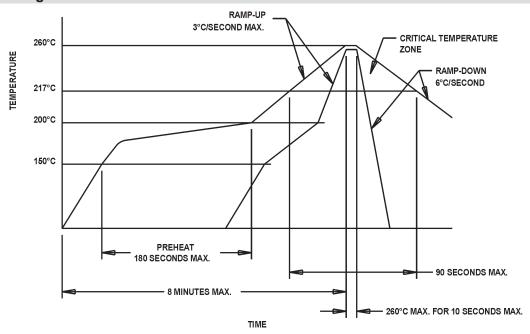

Quality Parameters

Environmental Specifications/Qualification Testing Performed on the M310 VCXO								
Test	Test Method	Test Condition						
Electrical Characteristics	Internal Specification	Per Specification						
Frequency vs. Temperature	Internal Specification	Per Specification						
Mechanical Shock	MIL-STD-202, Method 213, C	100 g's						
Vibration	MIL-STD-202, Method 201-204	10 g's from 10-2000 Hz						
Thermal Cycle	MIL-STD-883, Method 1010, B	-55 Deg. C to +125 Deg. C, 15 minute Dwell, 10 cycles						
Aging	Internal Specification	168 Hours at 105 Degrees C						
Gross Leak	MIL-STD-202, Method 112	30 Second Immersion						
Fine Leak	MIL-STD-202, Method 112	Must meet 1x10 ⁻⁸						
Solderability	MIL-STD-883, Method 2003	8 Hour Steam Age – Must Exhibit 95% coverage						
Resistance to Solvents	MIL-STD-883, Method 2015	Three 1 minute soaks						
Terminal Pull	MIL-STD-883, Method 2004, A	2 Pounds						
Lead Bend	MIL-STD-883, Method 2004, B1	1 Bending Cycle						
Physical Dimensions	MIL-STD-883, Method 2016	Per Specification						
Internal Visual	Internal Specification	Per Internal Specification						

Part Marking Guide

Line 1: Model Number Line 2: Frequency Line 3: Date Code

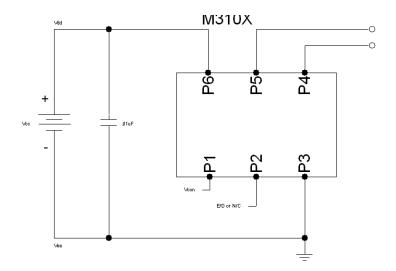

Line 4: Pin 1 Indicator / MtronPTI

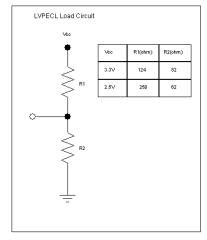

Tape & Reel Specifications

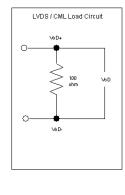
(all measurements are in mm)	Α	В	С	D	E	F	G	Н	I	J	K	L
M310x	6.51	9.29	1.5	7.5	2.8	4	8/12	16	180-330	13	21	60-100

Standard Tape and Reel: 100 parts per reel

Maximum Soldering Conditions




Solder Conditions


Note: Exceeding these limits may damage the device.

Typical Test Circuit & Load Circuit Diagrams

Product Revision Table

Date	Revision	PCN Number	Details of Revision
7/20/07	Α	10118	IC Revision to improve phase noise and electrical performance

For custom products or additional specifications contact our sales team at 800.762.8800 (toll free) or 605.665.9321

For more information on this product visit the MtronPTI website at www.mtronpti.com